DIY A Multiview Camera System:
Panoptic Studio Teardown

How To Use Data From A Multiview System
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Robotics Institute
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Non-Verbal Signals Convey Remarkable Information
a.k.a. Body Langauge

*....an elaborate code that I1s written nowhere, known
to Nno one, and understood by all” (sapir, 1949
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480 VGA Cameras
31 HD Cameras
10 Kinects




Synchronized Videos from Unique 521 Views
480 VGAs, 31HDs, and 10 RGB+Ds
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Measuring Social Signals at High-Resolution

Measuring Face, Body, Hand, and Surface Trajectories



Measuring 3D Volume

Visual Hull




Measuring 3D Motion

Dense Long-term 3D Trajectory Stream
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9 Joo et al., CVPR, 2014




Vleasuring Dense 3D Motion

L everaging “Flows” in A Large Number Views

Temporal correspondence problem within each camera view IS
much easier than correspondence problem across views



Vleasuring Dense 3D Motion

Key Issue o Leverage a Large Number of Views

Time-varying visibility problem

Which cameras are observing which points at each time”
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A Core |dea

Reasoning About Time Varying Visibility
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Trajectory Stream Reconstruction

. "
2. &
RO

_.'@{ °.

Key Advantage

No prior assumption about the motion (no smoothing and physics model)
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e
Joo et al., ICCV, 2015; Joo et al., arXiv, 2016




/Zhe et al.,

Realtime Multi-person 2D

Pose Estimation using Part Affinity Fields , CVP
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2D Pose Detection In Each View

Score Map Generation
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2D Pose Detection HeadTlop Right Shoulder Right Elbow Right Wrist Right Hip Right Knee Right Ankle



Generating 3D Node Score Maps

3D Voting from 2D Score Maps

@
Camera 2
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Camera 1 Camera 3



Generating 3D Node Score Maps

3D Voting from 2D Score Maps
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Camera 1 Camera 3



Algorithm Flow
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HeadTop/neck/bodyCenter
Left shoulder/elbow/wrist
Right shoulder/elbow/wrist
Left hip/knee/ankle

Right hip/knee/ankle



Algorithm Flow
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Generating “Node” Proposals
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HeadTop/neck/bodyCenter
Left shoulder/elbow/wrist
Right shoulder/elbow/wrist
Left hip/knee/ankle

Right hip/knee/ankle



@ HeadTop/neck/bodyCenter

©® @ Lecft shoulder/elbow/wrist

i © @ Right shoulder/elbow/wrist
, ; . - . © Left hip/knee/ankle

b e Ol - \SETEATNY . o R R B " ®® Righthip/knee/ankle

Algorithm Flow

W e Generating “Part” Proposals
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Algorithm Flow

LR ‘Node
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Generating “Skeletal” Proposals
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Algorithm Flow
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HeadTop/neck/bodyCenter
Left shoulder/elbow/wrist
Right shoulder/elbow/wrist
Left hip/knee/ankle

Right hip/knee/ankle

Associating with Dense 3D Trajectories
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Temporal Refinement



Algorithm Flow

Key Advantages

e Fully automatic method
* No prior template generation
* No assumption about motion and appearance
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Various Clothing and Topological Body Changes

The 16226 Mafia2 Sequence



Different Size of People

The lan Sequence
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. The 151125 Bang Sequence




Fast I\/IotiOn

(Applied stage 1 only)
The Dance Sequence
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Occlusions by Other Objects

(Applied stage 1 only)
The Drum Sequence




How Many Cameras Do We Need

Relation Between Scene Complexity and Number of Views
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How Many Cameras Do We Need

Relation Between Scene Complexity and Number of Views
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How Many Cameras Do We Need

Relation Between Scene Complexity and Number of Views

Accuracy (%)

PCK
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How Many Cameras Do We Need

Relation Between Scene Complexity and Number of Views

100
90

B0
70

S
& 50
S 40

<
30
20
B4 ' 10 &
PCK o .+, . PCK ¢

—

Two People Seve People

37



Are Body and Face Enough?

Important Nuances Are Embedded In Hands
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Body Only

Face

Body

Face+Body

Hand
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Face Keypoint Detectors Are Avallable

De la
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orre, Supervised Descent Method and its Application to Face Alignment, CV
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Source: https://www.youtube.com/watch?v=2DiQUX11YaY

eypoint Deﬁ@ors Are Ava ble

/Zhe, Simon, Wel, Sheikh, GV

PR 2017



How To Make A Good 2D Hand Pose Detector
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How To Make A Good 2D Hand Pose Detector
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Image Input Part Confidence Maps

— Deep Learning ——
CNN du jour



How To Make A Good 2D Hand Pose Detector

Training
Data

— Deep Learning ——
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Image Input Part Confidence Maps




How To Make A Good 2D Hand Pose Detector

Training Data

(Thousands of
| abeled Images)

Image Input Part Confidence Maps



ANNOTATORS NEEDED TO LABEL IMAGES

Image ID

Point Size

Annotator email

‘ Save Annotations

Help

Close Controls

We are looking for people to help annotate landmarks in images
and video. The ideal candidate should be consistent, self-
motivated, and have great attention to detail. The position will be

paid hourly at $12/hour, hours flexible.

- Work from home using any browser.

- ATTENTION TO DETAIL required.

- Proofreading and/or editing skills helpful
- Payment is up to $12 per hour

Contact: Tomas Simon (tsimon@cs.cmu.edu)

(npa:nwd*sI@uowlisy)
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How To Make A Good 2D Hand Pose Detector

Difficulties In Labeling Hand Joints

Occluded Joints are
Guessed



How To Make A Good 2D Hand Pose Detector

Difficulties In Labeling Hand Joints

Occluded Joints are
Guessed



How To Make A Good 2D Hand Pose Detector

Difficulties In Labeling Hand Joints

les

INnternal Joints are
Hard to Localize



How To Make A Good 2D Hand Pose Detector
Synthenc Data E Rea\ Data

Unreal Enaine + Mixamo



How To Make A Good 2D Hand Pose Detector
Synthetic Data = Real Data

/




Detector Trained Only on Synthetic Data




Detector Trained Only on Synthetic Data




Detector Trained Only on Synthetic Data




Detector Trained Only on Synthetic Data
With Enough Cameras: At Least Two Good Views of Each Keypoint




Detector Trained Only on Synthetic Data
With Enough Cameras: At Least Two Good Views of Each Keypoint




Detector Trained Only on Synthetic Data
With Enough Cameras: At Least Two Good Views of Each Keypoint

Correctly Detected Views Incorrectly Detected Views
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Multiview Bootstrapping
Trlangu\ahon as Supervision

Triangulated W ‘\‘
| Al

Keypoints

View 3 ‘
W_J

Correctly Detected Views Incorrectly Detected Views
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Multiview Bootstrapping
Trlangu\ahon as Supervision

’ — Reprojected
. ¥ ¢ Triangulations
/ % \/\
Triangulated ~ A‘
Keypoints \ P

View 3 ‘
W_J

Correctly Detected Views Incorrectly Detected Views
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Multiview Bootstrapping
Using a I\/Iu\tlwew System as an Annotation Machine

. % —  Reprojected N labeled images
. Y ¢ Triangulations
/ . . \/\
Triangulated ~ A‘
Keypoints 3 &

View 3 ‘
W_J

Correctly Detected Views Incorrectly Detected Views
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Multiview Bootstrapping
Using a I\/Iu\tlwew System as an Annotation Machine

% ~—  Reprojected N labeled images
: Y ¢ Triangulations
/ . . \/\
Triangulated - Q‘ —
Keypoints N\ ? Retrained

Detector

View 3 ‘
W_J W_J

Correctly Detected Views Incorrectly Detected Views Improved Detections



Multiview Bootstrapping
Inconsistent Detections Do Not [riangulate




Multiview Bootstrapping
False Positive When Random Triangulation




Multiview Bootstrapping
Triangulation As Supervision
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1. Initlal Detector

® [rained only using rendered examples















View 3




View 3










View 1




Initial 2D Detections (Inaccurate)
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Initial 2D Detections (Inaccurate)




2. Robust 3D [riangulation



3D Triangulation




3. Reprojections



Reprojected Iriangulations Are More Accurate

Reprojections
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Reprojected Iriangulations Are More Accurate

2D Detections
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Reprojected Iriangulations Are More Accurate

Reprojections
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4. Retrain Detector Using Reprojected Examples



Retrained Detector Is More Accurate

2D Detections (iteration 1)
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Retrained Detector Is More Accurate

2D Detections (initial)
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Retrained Detector Is More Accurate

2D Detections (iteration 1)
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Comparison Between lterations
| \, L

Initial (Iteration 0) lteration 1



Initial (Iteration 0) lteration 1 lteration 2



Reprojections 3D Triangulation




3D Triangulation Reprojections RiIght
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Reprojections . 3D Triangulation



Improving View Robustness of
Facial Keypoint Detectors

Initial Detections (lteration 0 --- Manual labels MultiPIE, Helen, AFW, ...)



Improving View Robustness of

Facial Keypoint Detectors
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Initial Detections (lteration 0 --- Manual labels MultiPIE, Helen, AFW, ...)

Retrained Detections (lteration 1)



Improving View Robustness of

Facial Keypoint Detectors
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Retrained Detections (lteration 1)
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The Panoptic Studio Dataset

A Large Scale Dataset For Kinesic Signals Processing
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Massively Multiview System

480 VGA camera views
30+ HD views

10 RGB-D sensors
Hardware-based sync
Calibration

. '
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. |

i !

— 7‘ Interesting Scenes with Labels

7 Multiple people

Socially interacting groups
3D body pose

3D facial landmarks
Transcripts + speaker ID

* See the full length version of this video here

e 12 hours of videos (500 TB)
e More than 150 individuals
e More than 300 social games o






Calibrated Multiview Input Fine-grained 2D Detection Triangulated Detections
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3D Triangulation




