
DIY A Multiview Camera System: 
Panoptic Studio Teardown

How To Use Data From A Multiview System
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a.k.a. Body Langauge
Non-Verbal Signals Convey Remarkable Information

“The study of the way in which certain body movements and gestures serve as a form 
of nonverbal communication.” [Birdwhistell 1970]

Kinesics:

Facial Expression

Body Gestures

Gaze
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	“….an elaborate code that is written nowhere, known 
to no one, and understood by all”  [Sapir, 1949] 



The Panoptic Studio
A Massively Multiview System with 521 Cameras

VGA Camera

HD Camera

Projector

480 VGA Cameras 
31 HD Cameras 

10 Kinects 

The Panoptic Studio
Modularized Design with 20 Panels
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Synchronized Videos from Unique 521 Views
480 VGAs, 31HDs, and 10 RGB+Ds

531GB/min 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Multiple naturally interacting people6



Measuring Social Signals at High-Resolution
Measuring Face, Body, Hand, and Surface Trajectories7



Measuring 3D Volume
Visual Hull

No temporal information
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Dense Long-term 3D Trajectory Stream

Joo et al., CVPR, 2014

Measuring 3D Motion
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Time t Time t+1

Temporal correspondence problem within each camera view is 
much easier than correspondence problem across views

Measuring Dense 3D Motion
Leveraging “Flows” in A Large Number Views
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Time t Time t+1

Key Issue To Leverage a Large Number of Views
Measuring Dense 3D Motion

Time-varying visibility problem 

Which cameras are observing which points at each time? 
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A Core Idea
Reasoning About Time Varying Visibility
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Trajectory Stream Reconstruction
The Volleyball Sequence
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Trajectory Stream Reconstruction
The Confetti Sequence
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The Fluid Motion Sequence
Trajectory Stream Reconstruction
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Trajectory Stream Reconstruction
Detailed Views

No prior assumption about the motion (no smoothing and physics model) 
Key Advantage
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3D Skeleton Projection on An Example View
Measuring Full Body Kinesic Signals

Joo et al., ICCV, 2015; Joo et al., arXiv, 201617



Zhe et al., Realtime Multi-person 2D Pose Estimation using Part Affinity Fields , CVPR 201718



Convolutional Pose Machines (Wei et al, CVPR 2016)
2D Pose Detection in Each View
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2D Pose Detection in Each View
Score Map Generation

20

2D Pose Detection HeadTop Right Shoulder Right Elbow Right Wrist Right Hip Right Knee Right Ankle



Foot

Camera 1
Camera 2

Camera 3

3D Voting from 2D Score Maps
Generating 3D Node Score Maps
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Foot

Camera 1
Camera 2

Camera 3

3D Voting from 2D Score Maps
Generating 3D Node Score Maps
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Algorithm Flow

Node

Part

Refinement

Skeletal Trajectory

HeadTop/neck/bodyCenter

Left shoulder/elbow/wrist

Right shoulder/elbow/wrist

Left hip/knee/ankle

Right hip/knee/ankle
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Generating “Node” Proposals

Algorithm Flow

Node

Part

Refinement

Skeletal Trajectory

HeadTop/neck/bodyCenter

Left shoulder/elbow/wrist

Right shoulder/elbow/wrist

Left hip/knee/ankle

Right hip/knee/ankle
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Algorithm Flow

Node

Part

Refinement

Skeletal Trajectory

Generating “Part” Proposals

HeadTop/neck/bodyCenter

Left shoulder/elbow/wrist

Right shoulder/elbow/wrist

Left hip/knee/ankle

Right hip/knee/ankle
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Generating “Skeletal” Proposals

Algorithm Flow

Node

Part

Refinement

Skeletal Trajectory
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Associating with Dense 3D Trajectories 
Temporal Refinement

Algorithm Flow

Node

Part

Refinement

Skeletal Trajectory

HeadTop/neck/bodyCenter

Left shoulder/elbow/wrist

Right shoulder/elbow/wrist

Left hip/knee/ankle

Right hip/knee/ankle
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Associating with Dense 3D Trajectories 
Temporal Refinement

Algorithm Flow

Node

Part

Refinement

Skeletal Trajectory

• Fully automatic method 
• No prior template generation 
• No assumption about motion and appearance

Key Advantages

28



Various Clothing and Topological Body Changes
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Different Size of People
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Severe Occlusions
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Fast Motion

Fast Motion
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Occlusions by Other Objects
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How Many Cameras Do We Need
Relation Between Scene Complexity and Number of Views
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VGA 300 
VGA 160 
VGA 10 
VGA 5PCK PCK
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How Many Cameras Do We Need
Relation Between Scene Complexity and Number of Views
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How Many Cameras Do We Need
Relation Between Scene Complexity and Number of Views
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PCK PCK

Two People Seven People

HD 19 
VGA 19 
QVGA 19

VGA 128

⇡

VGA 80



Body Only Face+Body Face+Body+Hand

Are Body and Face Enough?
Important Nuances Are Embedded In Hands
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Xiong & De la Torre, Supervised Descent Method and its Application to Face Alignment, CVPR 2013

Face Keypoint Detectors Are Available
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Zhe, Simon, Wei, Sheikh, CVPR 2017

Body Keypoint Detectors Are Available
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1

2

3

4

5

6

7
8

910

11

12

13

14

15

16

17

18

19

20

21

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

Confidence maps5 10 15 20 25 30

5

10

15

20

25

30 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

41

How To Make A Good 2D Hand Pose Detector



Part Confidence MapsImage Input

Deep Learning
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How To Make A Good 2D Hand Pose Detector

CNN du jour



Part Confidence MapsImage Input

Deep Learning

 Training 
Data
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How To Make A Good 2D Hand Pose Detector



Part Confidence MapsImage Input

Deep Learning

 Training Data
(Thousands of 

Labeled Images)
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How To Make A Good 2D Hand Pose Detector
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ANNOTATORS NEEDED TO LABEL IMAGES 

 
We are looking for people to help annotate landmarks in images 
and video. The ideal candidate should be consistent, self-
motivated, and have great attention to detail. The position will be 
paid hourly at $12/hour, hours flexible. 

- Work from home using any browser. 

- ATTENTION TO DETAIL required.  

- Proofreading and/or editing skills helpful 

- Payment is up to $12 per hour  

Contact: Tomas Simon (tsimon@cs.cmu.edu) 
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1) Wrist joint out of place. 
2) Some joints not centered on the 

finger. 

 

 

1) Finger joints on the surface of the 
hand instead of centered. 

 
 

1) Joints not centered (too close to 
surface) 

2) Wrist joint & first thumb joint out 
of place 

Occluded Joints are 
Guessed

How To Make A Good 2D Hand Pose Detector
Difficulties in Labeling Hand Joints
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1) Wrist joint out of place. 
2) Some joints not centered on the 

finger. 

 

 

1) Finger joints on the surface of the 
hand instead of centered. 

 
 

1) Joints not centered (too close to 
surface) 

2) Wrist joint & first thumb joint out 
of place 

Occluded Joints are 
Guessed

How To Make A Good 2D Hand Pose Detector
Difficulties in Labeling Hand Joints

47

 

1) Wrist joint out of place. 
2) Some joints not centered on the 

finger. 

 

 

1) Finger joints on the surface of the 
hand instead of centered. 

 
 

1) Joints not centered (too close to 
surface) 

2) Wrist joint & first thumb joint out 
of place 



Example annotations. 
 

Wrong Better Why 

 

1) The knuckles are almost on a 
straight line, so the annotations 
should more or less form a line 

2) The middle joints also are almost 
on a line but the middle and ring 
finger are usually slightly longer 
(so they are usually a little above 
the virtual line that connects the 
index and pinky finger's middle 
joints). 

 

1) Seen from below, the knuckles 
are a bit lower on the hand.  It is 
why there's a wrinkle in the 
fleshy part right under the finger. 
(Look at your hand from the side, 
bend your fingers at the 
knuckles and you'll see where 
the center of rotation is.) 

2) The wrist joint should be at the 
center of rotation rather than on 
the surface of the skin.  

 

 

1) Finger tips right at the tip. 
2) The second joint from the tip of 

the finger is closer to the tip 
(bend the fingers on your own 
hand for reference about the 
relative lengths). 

3) The middle joint in the finger is 
usually about half-way or a little 
less than half-way across the 
length of the finger. 

4) Be sure to center the annotations 
at the joint across all the axes (in 
3 dimensions). 

5) You can see a hint of the thumb. 

Internal Joints are 
Hard to Localize

How To Make A Good 2D Hand Pose Detector
Difficulties in Labeling Hand Joints
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Example annotations. 
 

Wrong Better Why 

 

1) The knuckles are almost on a 
straight line, so the annotations 
should more or less form a line 

2) The middle joints also are almost 
on a line but the middle and ring 
finger are usually slightly longer 
(so they are usually a little above 
the virtual line that connects the 
index and pinky finger's middle 
joints). 

 

1) Seen from below, the knuckles 
are a bit lower on the hand.  It is 
why there's a wrinkle in the 
fleshy part right under the finger. 
(Look at your hand from the side, 
bend your fingers at the 
knuckles and you'll see where 
the center of rotation is.) 

2) The wrist joint should be at the 
center of rotation rather than on 
the surface of the skin.  

 

 

1) Finger tips right at the tip. 
2) The second joint from the tip of 

the finger is closer to the tip 
(bend the fingers on your own 
hand for reference about the 
relative lengths). 

3) The middle joint in the finger is 
usually about half-way or a little 
less than half-way across the 
length of the finger. 

4) Be sure to center the annotations 
at the joint across all the axes (in 
3 dimensions). 

5) You can see a hint of the thumb. 

Knuckles
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(a) (b)

Figure 2: Training examples of rendered hand images. (a) Unreal Engine / Mixamo images.

(b) Raytraced hand mesh.

3

(a) (b)

Figure 2: Training examples of rendered hand images. (a) Unreal Engine / Mixamo images.

(b) Raytraced hand mesh.

3

Unreal Engine + Mixamo 

How To Make A Good 2D Hand Pose Detector
Synthetic Data != Real Data
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(a) (b)

Figure 2: Training examples of rendered hand images. (a) Unreal Engine / Mixamo images.

(b) Raytraced hand mesh.

3

(a) (b)

Figure 2: Training examples of rendered hand images. (a) Unreal Engine / Mixamo images.

(b) Raytraced hand mesh.

3

Raytraced Random Poses

How To Make A Good 2D Hand Pose Detector
Synthetic Data != Real Data
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Detector Trained Only on Synthetic Data
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Detector Trained Only on Synthetic Data
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Detector Trained Only on Synthetic Data
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Detector Trained Only on Synthetic Data
With Enough Cameras: At Least Two Good Views of Each Keypoint
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Detector Trained Only on Synthetic Data
With Enough Cameras: At Least Two Good Views of Each Keypoint
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Detector Trained Only on Synthetic Data

} }
Correctly Detected Views Incorrectly Detected Views

With Enough Cameras: At Least Two Good Views of Each Keypoint



View 1 View 2 View 3

Correctly Detected Views Incorrectly Detected Views

Triangulated 
Keypoints

} }
57

Multiview Bootstrapping
Triangulation as Supervision



View 1 View 2 View 3

Correctly Detected Views

Reprojected 
Triangulations

Incorrectly Detected Views

Triangulated 
Keypoints

} }
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Multiview Bootstrapping
Triangulation as Supervision



View 1 View 2 View 3

Correctly Detected Views

Reprojected 
Triangulations

Incorrectly Detected Views

Triangulated 
Keypoints

} }

Multiview Bootstrapping
Using a Multiview System as an Annotation Machine
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N labeled images



View 1 View 2 View 3

Correctly Detected Views

Reprojected 
Triangulations

Incorrectly Detected Views

Triangulated 
Keypoints

} }

Multiview Bootstrapping
Using a Multiview System as an Annotation Machine
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N labeled images

Retrained 
Detector

Improved Detections

}



View 1 View 2 View 3

Multiview Bootstrapping
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Inconsistent Detections Do Not Triangulate



View 1 View 2 View 3

Multiview Bootstrapping
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False Positive When Random Triangulation



Multiview Bootstrapping
Triangulation As Supervision
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1. Initial Detector
• Trained only using rendered examples
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View 1
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View 1
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View 2
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View 2
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View 3
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View 3

70



View 4

71



View 4
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…

View 1

View 4 View 5

View 2 View 3

View 6

View 31View 7

73



Initial 2D Detections (Inaccurate)
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Initial 2D Detections (Inaccurate)
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2. Robust 3D Triangulation
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3D Triangulation
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3. Reprojections
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Reprojections
Reprojected Triangulations Are More Accurate
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2D Detections
Reprojected Triangulations Are More Accurate
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Reprojections
Reprojected Triangulations Are More Accurate
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4. Retrain Detector Using Reprojected Examples
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2D Detections (iteration 1)
Retrained Detector Is More Accurate
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2D Detections (initial)
Retrained Detector Is More Accurate
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2D Detections (iteration 1)
Retrained Detector Is More Accurate
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Comparison Between Iterations

Initial (Iteration 0) Iteration 186



Initial (Iteration 0) Iteration 1 Iteration 2

Comparison Between Iterations
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Initial Detections (Iteration 0 --- Manual labels MultiPIE, Helen, AFW, ...)

Improving View Robustness of 

Facial Keypoint Detectors
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Improving View Robustness of 

Facial Keypoint Detectors

Retrained Detections (Iteration 1)
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Initial Detections (Iteration 0 --- Manual labels MultiPIE, Helen, AFW, ...)



Improving View Robustness of 

Facial Keypoint Detectors

Retrained Detections (Iteration 1)
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Initial Detections (Iteration 0 --- Manual labels MultiPIE, Helen, AFW, ...)
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OpenPose
on GitHub

Escape the Dome



The Panoptic Studio Dataset
A Large Scale Dataset For Kinesic Signals Processing
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• 12 hours of videos (500 TB) 
• 	More than 150 individuals 
• More than 300 social games 96



2D Landmarks of Face, Body, and Hand 
Rich 2D Training Data
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Calibrated Multiview Input Fine-grained 2D Detection Triangulated Detections

3D Point CloudsMultiview RGB-D Depth Maps
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Questions?


