DIY A Multiview Camera System: Panoptic Studio Teardown

How To Use Data From A Multiview System

Robotics Institute Carnegie Mellon University

Hanbyul Joo and Tomas Simon

Non-Verbal Signals Convey Remarkable Information a.k.a. Body Langauge

"....an elaborate code that is written nowhere, known to no one, and understood by all" [Sapir, 1949]

Kinesics:

"The study of the way in which certain **body movements and gestures** serve as a form of **nonverbal communication**." [Birdwhistell 1970]

The Panoptic Studio Modularized Design with 20 Panels

480 VGA Cameras 31 HD Cameras 10 Kinects

Projector

HD Camera

VGA Camera

Synchronized Videos from Unique 521 Views 480 VGAs, 31HDs, and 10 RGB+Ds

Multiple naturally interacting people

Measuring Face, Body, Hand, and Surface Trajectories

E

Measuring 3D Motion Dense Long-term 3D Trajectory Stream

Joo et al., CVPR, 2014

1

Measuring Dense 3D Motion Leveraging "Flows" in A Large Number Views

Temporal correspondence problem **within** each camera view is much easier than correspondence problem **across** views

Time t

Time *t*+1

Measuring Dense 3D Motion Key Issue To Leverage a Large Number of Views

Time t

Time-varying visibility problem

Time t+1

Which cameras are observing which points at each time?

A Core Idea

Reasoning About Time Varying Visibility

Trajectory Stream Reconstruction The Volleyball Sequence

Trajectory Stream Reconstruction The Confetti Sequence

Trajectory Stream Reconstruction The Fluid Motion Sequence

Trajectory Stream Reconstruction Detailed Views

Key Advantage No prior assumption about the motion (no smoothing and physics model)

Measuring Full Body Kinesic Signals 3D Skeleton Projection on An Example View

Joo et al., ICCV, 2015; Joo et al., arXiv, 2016

11.9 fps

Frame by frame detection (no tracking)

APPROXIME & ALCON

Zhe et al., Realtime Multi-person 2D Pose Estimation using Part Affinity Fields , CVPR 2017

2D Pose Detection in Each View

2D Pose Detection in Each View Score Map Generation

Generating 3D Node Score Maps 3D Voting from 2D Score Maps

Camera 1

Generating 3D Node Score Maps 3D Voting from 2D Score Maps

Camera 1

Generating "Node" Proposals

Generating "Part" Proposals

Generating "Skeletal" Proposals

Refinement

Associating with Dense 3D Trajectories Temporal Refinement

Part

Key Advantages

- Fully automatic method No prior template generation

Oncicial Itajectory

No assumption about motion and appearance

Associating with Dense 3D Trajectories Temporal Refinement

Various Clothing and Topological Body Changes

The 16226 Mafia2 Sequence

Different Size of People

The *Ian* Sequence

Severe Occlusions

The 151125 Bang Sequence

(Applied stage 1 only) The *Dance* Sequence

-71

Fast Motion

B

Occlusions by Other Objects

(Applied stage 1 only) The *Drum* Sequence

How Many Cameras Do We Need Relation Between Scene Complexity and Number of Views

Two People

Seven People

How Many Cameras Do We Need Relation Between Scene Complexity and Number of Views

Two People

Seven People

How Many Cameras Do We Need Relation Between Scene Complexity and Number of Views

Two People

Seven People
How Many Cameras Do We Need Relation Between Scene Complexity and Number of Views

Two People

Seven People

Are Body and Face Enough? Important Nuances Are Embedded In Hands

Body Only

Face+Body

Face+Body+Hand

Face Keypoint Detectors Are Available

Xiong & De la Torre, Supervised Descent Method and its Application to Face Alignment, CVPR 2013

39

Body Keypoint Detectors Are Available

A.

Source: https://www.youtube.com/watch?v=2DiQUX11YaY

12.2 fps

Zhe, Simon, Wei, Sheikh, CVPR 2017

15

Keypoints

Confidence maps

Image Input

Deep Learning CNN du jour

Part Confidence Maps

Image Input

Part Confidence Maps

Image Input

Training Data (Thousands of Labeled Images)

Part Confidence Maps

ANNOTATORS NEEDED TO LABEL IMAGES

We are looking for people to help annotate landmarks in images and video. The ideal candidate should be consistent, selfmotivated, and have great attention to detail. The position will be paid hourly at \$12/hour, hours flexible.

- Work from home using any browser.
- ATTENTION TO DETAIL required.
- Proofreading and/or editing skills helpful
- Payment is up to \$12 per hour

Contact: Tomas Simon (tsimon@cs.cmu.edu)

Tomas Simon (tsimon@cs.cmu.edu) Tomas Simon (tsimon@cs.cmu.edu)	Tomas Simon (tsimon@cs.cmu.edu) Tomas Simon (tsimon@cs.cmu.edu)	Tomas Simon (tsimon@cs.cmu.edu) Tomas Simon (tsimon@cs.cmu.edu)	Tomas Simon (tsimon@cs.cmu.edu) Tomas Simon (tsimon@cs.cmu.edu)	Tomas Simon (tsimon@cs.cmu.edu)	Tomas Simon (tsimon@cs.cmu.edu)	Tomas Simon (tsimon@cs.cmu.edu)	Tomas Simon (tsimon@cs.cmu.edu)
--	--	--	--	------------------------------------	------------------------------------	------------------------------------	------------------------------------

How To Make A Good 2D Hand Pose Detector Difficulties in Labeling Hand Joints

Occluded Joints are Guessed

How To Make A Good 2D Hand Pose Detector Difficulties in Labeling Hand Joints

Occluded Joints are Guessed

How To Make A Good 2D Hand Pose Detector Difficulties in Labeling Hand Joints

Internal Joints are Hard to Localize

How To Make A Good 2D Hand Pose Detector Synthetic Data != Real Data

How To Make A Good 2D Hand Pose Detector Synthetic Data != Real Data

Detector Trained Only on Synthetic Data

Detector Trained Only on Synthetic Data

Detector Trained Only on Synthetic Data

Detector Trained Only on Synthetic Data With Enough Cameras: At Least Two Good Views of Each Keypoint

Detector Trained Only on Synthetic Data With Enough Cameras: At Least Two Good Views of Each Keypoint

Detector Trained Only on Synthetic Data With Enough Cameras: At Least Two Good Views of Each Keypoint

Incorrectly Detected Views

Correctly Detected Views

N labeled images

Incorrectly Detected Views

Correctly Detected Views

N labeled images

Incorrectly Detected Views

Improved Detections

Multiview Bootstrapping Inconsistent Detections Do Not Triangulate

View 2

View 1

Multiview Bootstrapping False Positive When Random Triangulation

Multiview Bootstrapping Triangulation As Supervision

V=5

True and False 10-3 **Positive Rates**

1. Initial DetectorTrained only using rendered examples

.

.

38

30

Initial 2D Detections (Inaccurate)

Initial 2D Detections (Inaccurate)

2. Robust 3D Triangulation

3. Reprojections

Reprojected Triangulations Are More Accurate

Reprojections

Reprojected Triangulations Are More Accurate

Reprojected Triangulations Are More Accurate

Reprojections

4. Retrain Detector Using Reprojected Examples

Retrained Detector Is More Accurate

Retrained Detector Is More Accurate

Retrained Detector Is More Accurate

Initial (Iteration 0)

Iteration 1

Iteration 2

Reprojections

Reprojections

Reprojections

-

3D Triangulation

Improving View Robustness of **Facial Keypoint Detectors**

Initial Detections (Iteration 0 --- Manual labels MultiPIE, Helen, AFW, ...)

Improving View Robustness of **Facial Keypoint Detectors**

Initial Detections (Iteration 0 --- Manual labels MultiPIE, Helen, AFW, ...)

Retrained Detections (Iteration 1)

Improving View Robustness of **Facial Keypoint Detectors**

Initial Detections (Iteration 0 --- Manual labels MultiPIE, Helen, AFW, ...)

Retrained Detections (Iteration 1)

OpenPose on GitHub

Escape the Dome

The Panoptic Studio Dataset A Large Scale Dataset For Kinesic Signals Processing

* See the full length version of this video here

Dataset Size

- 12 hours of videos (500 TB)
- More than 150 individuals
- also see the video version here More than 300 social games action capture paper (extended version of ICCV15) is available on arXiv.

rianoyai

Rich 2D Training Data 2D Landmarks of Face, Body, and Hand

body1

body0

body2

6

Calibrated Multiview Input

Multiview RGB-D Depth Maps

Fine-grained 2D Detection

Triangulated Detections

