Hardware Design, Structure, and Networking

Shohei Nobuhara Kyoto Univ.

Structure Design Different Designs for Different Goals

v1.0: Rander, Narayanan, Kanade 1995

v2.0: Vedula, Saito, Kanade 1998

Structure Design Different Designs for Different Goals

Dependencies

Different Designs for Different Goals

Structure Design Different Designs for Different Goals

Remote studio

Cameras for Complete LF Dense low-res cameras or sparse high-res cameras?

Dense low-res cameras / simple task \Leftrightarrow Sparse high-res cameras / complex task ++ Visibility ++ Resolution

(Catalan solid)

Optimized Placement of Cameras Minimizing Differences in Camera Angles

The Panoptic Studio Modularized Design with 20 Panels

The Panoptic Studio Modularized Design with 20 Panels

HD Camera

Kinect

VGA Camera

Diameter: 5.49 m

Dependencies

Different Designs for Different Goals

The Panoptic Studio Modularized Design with 20 Panels

The Panoptic Studio Modularized Design with 20 Panels

PCIe I/F

9309

Projector

HD Camera

480 VGA Cameras 31 HD Cameras 10 Kinects

ViewPLUS ALL COUNTRE

VGA Camera

31 HD Cameras (31 Panels)

Synchronization

Synchronization Why do we need this?

I riangulation assumes same time instant

Synchronization

Different standards for machine-vision and production

Frame i+1

Timestamp for machine-vision cameras Host-side or camera-side

NTP (host-side time-sync)

Timestamp for machine-vision cameras Host-side or camera-side

NTP (host-side time-sync)

Synchronization Design space

• Clapping / Flashing

Synchronization Trigger vs Phase-lock (Genlock)

Production camera: Genlock Old 1394a camera: PGR SyncUnit

Timecode Frame-embedding vs LTC in audio

Not for sync

→Camera should know the world clock Image count

→Useful for frame-drop detection

- →Fast-forwarded for our 100Hz system
- →Frame start/end in time is not accurate

Synchronization Decision principle

0

0

•	Synchronized shutter	
---	----------------------	--

- Trigger (+LTC or PTP)
- Genlock (+LTC)
- PTP + synchronous free run 0

of cables Scalability Accuracy

+

 $\begin{array}{ccc} 1 & (+1) & ++ \\ 1 & (+1) & ++ \end{array}$

- Async with timestamp
 - Clapping / Flashing
 - PTP 0
 - Multiple LTC recording
 1
- (None)
 - Clapping / Flashing

+++

+++

+

╋╋

++

╋

?

31 HD Cameras (31 Panels)

Synchronization Take-home messages

- Shutter-level hardware sync is best if you can afford it.
 - Additional cables per camera
 - Signal generator / distributer

- PTP + synchronous free run can be an option for small camera system
 - All cameras should be in a single LAN

From FLIR/Pointgrey and ViewPLUS

Capture System

Capture System Why do we need PC system?

Visualization / Broadcasting

Capture System Design space

31 HD Cameras (31 Panels)

PC System Take-home messages

- Distributed architecture is required for large-scale system
 - Modular design = easier maintenance

- Centralized architecture can be better for smaller system
 - Simpler real-time multi-view processing
 - No need to exchange images among nodes

Redesign from scratch?

Dependencies

Redesign from scratch? Diversity / scalability / realtime-ness

HW-based Shared Memory (40Gbps per point-to-point)

Redesign from scratch? Diversity / scalability / realtime-ness

Trigger generator / distributer

ViewPLUS SyncUSB3

Discussions Limitations, future work

Large-scale, Outdoor

Underwater

- Cabling?
- Pan/tilt robot?
- Lens control?

- Cabling?
- Illumination?

Microscale

- DoF?
- Multi-view?

Discussions Limitations, future work

3D surface capture via unknown refractive media

Discussions Limitations, future work

3D surface capture via *unknown* refractive media

Panoptic Studio Heterogeneous distributed system

Master Node

Diversity

31 HD Cameras (31 Panels)

